According to Wikipedia, cancer research is “basic research into cancer in order to identify causes and develop strategies for prevention, diagnosis, treatments and cure.” At face value this seems self-evident, yet “cancer research” means different things to different people.
Most cancer patients think of cancer research as the effort to achieve the best possible outcome for individual patients. Taxpayers and donors to charitable organizations also tend to view the process through the lens of therapeutics. But patient treatment is but a small part of cancer research. One of the largest cancer research organizations, the American Cancer Society, was the subject of an investigative report by Channel 2 in Atlanta, Georgia. They found that this billion dollar organization spent 32% of the money it raised on raising money. What of the other 68%? How much of that money actually goes to patient care? When one factors in education, transportation, administration, PR, salaries and basic research, actual patient care support is close to the bottom of the list.
More instructive is an examination of how people engaged in cancer research define their work. On one side are clinical investigators (trialists) who administer the treatments developed in the laboratories of scientists after pre-clinical analyses. On the other side are the basic researchers whose job it is to answer questions and resolve scientific dilemmas. They are granted enormous amounts of money to delve into the deepest intricacies of cancer biology, genomics, transcriptomic and proteomics in an effort to better understand the etiology (causation) of this dreaded disease.
In examining this disjointed field, I considered my own area of work. I am a clinical investigator who also conducts research in a laboratory. As such, I straddle the fence between basic research and clinical science. This is increasingly dangerous ground, as the gap between scientists and clinicians grows wider by the day. Most clinical investigators have, at best, a passing understanding of molecular biology, and most molecular biologists have absolutely no idea what clinical medicine is.
This is unfortunate, for it is the greater blending of science with clinical therapy that will lead to better outcomes. Pondering this dichotomy I recognized that my job is first and foremost to save lives and to alleviate suffering. For me, the laboratory is a means to an end. It is a tool that I use to resolve clinical questions. What drug, what combination, what sequence? These questions are best answered in the laboratory, not in patients, wherever possible.
For the basic scientist the task is to answer a question. For them the laboratory is an end unto itself. They use multiple parameters to examine the same question from different angles, seeking to control every variable. A good scientific paper will use genomic (DNA), transcriptomic (RNA), and proteomic (protein expression) analyses until the issues have all been resolved to their satisfaction. In the literature this is known as “elegant” science. The operative term here is control. The scientist controls the experiment, controls the environment, controls the outcome, and controls the publication process. They are in charge.
What of the poor clinical investigator, who must, per force of necessity, be humble. They are not in control of the clinical environment and rarely understand the intricacies of the metabolic, genomic and proteomic events taking place before their eyes. They must approximate, sometimes guess and then act. For the clinician, the laboratory is an opportunity to answer practical real-world questions, not nuanced theoretical principles.
The greatest criticism that a scientist can level at an opponent is a lack of focus, defined as the inability to drill down onto the essence of the question. These scientists sit on study sections, review manuscripts and fund grants. Over decades they have been allowed to define the best research as the most narrowly focused. Incrementalists have out-stripped, out-funded and out-maneuvered big thinkers. While basic researchers examine which residue on the EGFr domain becomes phosphorylated, clinical physicians must do hand-to-hand combat with the end result of these mutations: non-small cell lung cancer.
Medical history instructs that big questions are best answered when prepared minds (William Withering, Ignaz Semmelweis, etc.) pursue scientific answers to real clinical questions. Unfortunately, today’s clinicians have been relegated to the role of “hypothesis testers.” This has led to a profusion of blind alleys, failed clinical trials and the expenditure of billions of dollars on extremely “interesting questions.”
George Bernard Shaw said, “England and America are two countries separated by a common language.” Increasingly, cancer research has become two distinctly different disciplines divided by a common name.
Comments