• Dr. Robert A. Nagourney, MD

Breakthroughs In Cancer?

Coco Chanel, the icon of 20th century fashion once said, “Only those with no memory insist on their originality.”

I am reminded of this quote as I review recent discoveries in cancer, among them, the recognition that cancer represents a dysregulation of cellular metabolism.

The field of metabolomics (the systematic study of cellular energy production), explored by investigators over the last decade is little more than the rediscovery of enzymology (a branch of biochemistry that deals with the properties, activity, and significance of enzymes), biochemistry (the science dealing with the chemistry of living matter) and stoichiometry (the part of chemistry that studies amounts of substances that are involved in reactions), pioneered by investigators like Albert Lehninger, Hans Krebs, Otto Warburg, and Albert Szent-Gyorgyi.

These innovators used crude tools to explore the basis of human metabolism as they crafted an understanding of bioenergetics (the study of the transformation of energy in living organisms) and oxidative phosphorylation (processes occurring in the cell’s mitochondrion that produce energy through the synthesis of ATP (energy carrier of the body).

More recently, scientists wedded to genomics have slowly come to recognize the limitations of their approach and have returned to the field of phenotypic (the observable physical or biochemical characteristics of an organism analysis.

While newcomers to the field claim to be the first to recognize the role of cellular biology in tumor biology, a cadre of dedicated investigators had already charted these waters decades earlier. Beginning with the earliest studies by Siminovitch, McCulloch and Till, subsequent investigations by Sydney Salmon and Anne Hamburger, developed the earliest iteration of cellular studies for the examination of cancer biology in primary culture.

Ovarian Cancer

The work of Black and Spear, published in the 1950s similarly explored the study of human cellular behavior for the study of cancer research. While Larry Weisenthal, Andrew Bosanquet and others established useful predictive methodologies to study cellular phenotype, their seminal contributions have gone largely unrecognized. {{cta('8abe8785-a4a0-40ee-b960-71ebb51d4a37','justifyright')}}

Today, start-up companies are examining cellular biology to predict cancer outcomes, each claiming to be the first to recognize the importance of cell death events in primary culture. The most recent and widely touted in the literature is the use of mouse avatars. Implanting biopsied explants of tissue from patients into nude mice, they grow the cancers to desired size and then inject the drugs of interest to show tumor shrinkage.

To the discerning eye however, it obvious that this represents little more than an expensive, inefficient, and extremely slow way to achieve that, which can be done more easily, inexpensively, and quickly in a tissue culture environment.

When I read the promotional material of some of the new entrants to this field, I am reminded of another quote, that of Marie Antoinette, who said, “There is nothing new except what has been forgotten.”

1 view